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1 Introduction
Autonomous multi-agent racing is an intricate challenge in the F1TENTH community, featuring
the intersection of a wide variety of fields. This project successfully developed a robust and efficient
framework for predictive path planning and strategic decision-making, tailored for competitive
racing environments.
The framework was implemented with ROS2 on a modified RC car equipped with a 2D LiDAR

sensor, an NVIDIA Jetson computing unit. It leverages advanced racing methodologies such as
occupancy grid-based planning, motion prediction, and heuristic algorithms like A*. Through a
combination of reactive behavior and predictive capabilities, our system achieved safe and optimal
performance in stochastic multi-agent scenarios.

The results demonstrate the feasibility of applying predictive path-planning techniques in high-
speed, dynamic environments, pushing the boundaries of autonomous racing systems. This work
contributes not only to the F1TENTH community but also to broader research in autonomous
systems, offering insights into the challenges and solutions for operating in real-world multi-agent
environments.

1.1 Problem Statement
The challenge lies in designing a predictive path-planning system for a multi-agent autonomous
racing environment. Unlike static obstacles, moving agents must be identified and distinguished
from walls or other static objects, requiring advanced perception capabilities. This may require us
to depend on the camera and computer vision libraries such as OpenCV or PyTorch. However, due
to our technology stack, the simulator has no support for vision based algorithms. As a result, we
limited our algorithms to work with LiDAR, Odometry, and race map data.

It should be noted that although our algorithm works in theory and in the simulator, this might
not be true for real-world testing. The algorithm is susceptible to faults in odometry data, which
may be unreliable in real life.
Furthermore, the system must operate effectively at high speeds, necessitating a balance be-

tween reactive components for immediate decision-making and planning components for strategic
maneuvers such as overtaking. The goal is to develop a system that can dynamically adapt to the
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behavior of other agents, ensuring safe as well as efficient navigation while maintaining competitive
performance on the track.

1.2 Importance
Within the F1TENTH community, this project represents the pinnacle of autonomous racing
challenges. This project is significant because it provides a clear goal to strive toward: building a
competition-standard autonomous racing car and algorithm. It requires the integration of knowledge
from algorithms, data structures, mathematics, and programming, while encouraging research into
advanced methods for improving the car’s performance.
Beyond the academic context, this project offers valuable real-world insights into how au-

tonomous vehicles must operate in stochastic environments with multiple unpredictable agents.
It highlights the challenges of balancing safety and performance, allowing us to appreciate the
complexity of software systems behind safe autonomous driving vehicles.

1.3 Anticipated Challenges
One of the most significant challenges of this project is translating theoretical knowledge into a
practical and feasible implementation. While the concepts of predictive path planning and multi-
agent systems are well-documented, applying these ideas to the real-world will prove to be a
challenge.
The project is particularly hard because there is no definitive end goal; solutions can always

be further optimized. This may involve developing new strategies to reduce runtime overhead,
minimize memory usage, or achieve better performance results. Here are some challenges that will
need to be faced:

• Simulation Setup: Configuring the ROS2 simulator for multi-agent racing scenarios is a
challenge in itself. This includes implementing dynamic agents with realistic racing behavior.

• Predictive Path Planning: Designing and implementing a predictive path-planning system
that accounts for the behavior of other agents. This involves combining reactive components
to create a dynamic path planning with race strategies.

• Perception Systems: Identifying moving agents as distinct from walls or static obstacles is
non-trivial. LiDAR-based perception and may not be enough, in which case computer vision
might be an asset.

• High-Speed Operation: Ensuring the system operates efficiently and accurately at high
speeds. This involves making sure we implement optimized algorithms with a reasonable
runtime.

2 Proposed Work
This section outlines the objectives and a feasible timeline for implementing a predictive path-
planning system in a multi-agent racing environment.

2.1 Objectives
The primary objectives of this project are:

• Develop a Multi-Agent Simulator: Configure a ROS2 simulation environment in RViz to
replicate multi-agent racing scenarios with dynamic agents.

• Design Predictive Path-Planning Algorithms: Create a framework capable of distinguish-
ing moving agents from static obstacles and optimizing race trajectories for overtaking while
avoiding collisions.
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• Integrate Reactive and Strategic Components: Combine real-time reactive elements with
race path planning advanced decision-making.

• Demonstrate and Evaluate Performance: Validate the system in both simulation and
real-world, with a focus on safety and speed.

3 Evaluation Metrics
The performance of the predictive path-planning systemwill be evaluated based on both quantitative
and qualitative metrics defined below.

3.1 Success Criteria
The success of the project will be determined by the following criteria:

• The ability of the system to distinguish moving agents from static obstacles in both simulation
and real-world tests.

• Successful execution of overtaking maneuvers without collisions in the simulator and in the
real-world.

• Competitive lap times that demonstrate efficient path planning and optimized race trajectories
(with and without opponents).

• Robust performance under varying scenarios, including different speeds and opponent be-
haviors.

4 Path Planning Algorithms
In this section, we discuss the algorithms employed to implement a multi-agent racing system. The
design leverages a hierarchical planning approach, where a global planner generates an initial,
pre-defined trajectory based on map data, and local planners refine this trajectory in real-time to
account for dynamic obstacles, static obstacles, and general deviatians from the global path.

4.1 Global Planner
The global planner provides a high-level trajectory by discretizing the track into a series of way-
points, which act as reference points for the car to follow. All of this occurs We utilized the Pure
Pursuit algorithm as the core method for global path planning, due to its simplicity and effectiveness
in generating smooth trajectories.

Here’s an overview of how the algorithm works:

(1) Map Preprocessing: Map data was obtained using a SLAM pipeline, which generated a 2D
occupancy grid of the environment. In this project, we used the slam_toolbox package to
create accurate and detailed maps of the racing track. These maps served as the foundation
for the subsequent steps in the planning process.

(2) Waypoint Generation: To create a raceline for the Pure Pursuit algorithm, we first extracted
key features from the map, such as track boundaries and curves. A spline was then fitted to
represent the optimal racing path. This spline was discretized into evenly spaced waypoints,
providing a high-resolution reference for the algorithm. Each waypoint was annotated with
positional and curvature information, which aids in generating smooth trajectories.

(3) Pure Pursuit Algorithm: Using the generated waypoints, the Pure Pursuit algorithm
calculated a curvature-based trajectory by steering toward a dynamically selected look-ahead
point along the path. This method ensured smooth and adaptive navigation while balancing
simplicity and real-time efficiency, making it particularly well-suited for high-speed racing
scenarios.
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Fig. 1. Pure Pursuit Algorithm

This planner performs exceptionally well in both simulation and real-world scenarios, provided
that the map data is accurate and corresponds directly to the real-world track. However, the
algorithm’s limitations become evident when unpredicted obstacles are introduced on the track.
To address this, a local planner is required to dynamically adjust the trajectory and ensure safe
navigation in real-time.

4.2 Local Planners
While the global planner provides an optimal baseline trajectory, it does not account for dynamic
obstacles or changes in the environment. This is where the local planner comes into play. In this
section, we cover a range of strategies and methodologies for local planners.

4.2.1 Occupancy Grid Methodologies. In this section, we cover local planners that leverage an
occupancy grid to model the environment, integrating sensor data (e.g., LiDAR) to detect obstacles
and other agents. This grid provides a probabilistic representation of the space, identifying free,
occupied, and unknown regions.

In our occupancy grid representation, we used −1 to represent free space and a float value in the
range [0, 1] to represent the probabilistic occupancy measure for a specific grid coordinate. We
used Brehansam’s line algorithm to populate the grid from lidar data. Then, several algorithms can
be used to produce a local path from the car to the lookahead waypoint.

Several algorithms were explored for local path planning on the occupancy grid:
(1) A* Algorithm

A* was chosen for its reliability and computational efficiency in grid-based pathfinding. It
uses a heuristic to estimate the cost of reaching the goal, enabling the generation of least-cost
collision-free paths.The cost function was designed to prioritize paths that adhered closely to
the global trajectory while avoiding obstacles.

(2) RRT and RRT*
These sampling-based planners excel in navigating complex environments. RRT generates
feasible paths by exploring the space rapidly, while RRT* refines the path for optimality.
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Fig. 2. Occupancy Grid Local Planning, A* Algorithm

While promising, their higher computational cost limited their applicability in real-time
racing scenarios.

(3) D*Algorithm TheD* (Dynamic A*) algorithm is an extension of the A* algorithm, specifically
designed to handle dynamic environments where the map can change over time. Unlike A*,
which computes a static path from the start to the goal, D* continuously updates the path as
new information becomes available. This makes it particularly suitable for scenarios with
moving obstacles or dynamic changes in the occupancy grid.

Limitations of Occupancy Grid Methods. Although occupancy grid methods are simple and
effective, they are unable to differentiate between dynamic obstacles—i.e., other agents—and static
obstacles, like walls. This limitation hinders their ability to implement advanced racing strategies.

For instance, in real-world multi-agent racing scenarios, RRT-based planners often struggle with
overtaking opponents. The local path may oscillate around the opponent’s position, potentially
causing erratic behavior or, in severe cases, collisions with the opponent. This makes these methods
suboptimal for real-world racing scenarios, where differentiation between static and dynamic
elements is crucial for advanced strategy development.

Additionally, iterating over LiDAR and populating the occupancy grid is a costly operation. Ways
to optimize this would be finding strategies to minimize read and write operations to the occupancy
grid, like populating the grid on a need-to-know basis or saving occupancy grid information for
next iterations.

Future Considerations. To overcome these limitations, integrating dynamic obstacle recognition
techniques (e.g., incorporating velocity data or motion prediction models) could significantly
enhance the effectiveness of local planners. Additionally, exploring hybrid approaches that combine
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occupancy grids with advanced methodologies like Model Predictive Control or Reinforcement
Learning could provide more adaptive solutions.

5 Results
The success of our project was measured through a combination of quantitative and qualitative
evaluations, focusing on the car’s ability to navigate multi-agent racing scenarios effectively. In
this section, we outline the key metrics, observations, and areas for further exploration.

5.1 Quantitative Measurements
To evaluate the performance of our system, we collected quantitative measurements based on
the car’s ability to avoid collisions with other agents in a dynamic racing environment. The key
observations include:

• The car successfully avoided agents in the majority of test cases, demonstrating the effective-
ness of the local planner in identifying and reacting to dynamic obstacles.

• Path planning algorithms, such as A* on the occupancy grid, consistently produced safe
trajectories, ensuring that the car maintained a collision-free path even in challenging multi-
agent scenarios.

• Visual inspection of the car’s movements showed that the algorithm was functioning as
intended, adapting to the presence of other agents and recalculating paths in real time.

These results confirm that the primary objective of the project—designing a system capable of
multi-agent racing with dynamic obstacle avoidance—was successfully achieved.

5.2 Qualitative Observations
Although the primary focus was on quantitative metrics, some qualitative observations were made
during the project:

• Visual feedback from simulation runs indicated smooth trajectory adjustments and reliable
agent avoidance behavior.

• The car demonstrated consistent adherence to the global planner’s path while incorporating
local adjustments for agent avoidance.

5.3 Limitations and Future Work
While the results indicate success, there are areas where further development and measurements
could enhance the system’s performance:

• Additional Quantitative Metrics: Given more time, we would have measured lap times to
evaluate the racing strategy’s overall efficiency. Additionally, we could use these race times
to compare different strategy implementations. This would have provided deeper insight into
the effectiveness of different strategies in the context of multi-agent racing.

• Optimization of Racing Strategies: Future work could focus on fine-tuning the balance
between speed and safety, developing advanced racing strategies for overtaking and time
optimization.

• Graph-Based Visual Results: More extensive qualitative evaluations, such as assessing the
car’s behavior in edge cases or more complex scenarios, would provide a holistic understand-
ing of system performance.

6 Conclusion
The primary aim of this project was to design a racing strategy capable of navigating multi-agent
racing settings with a high degree of success while maintaining a competitive lap time. Based

J. ACM, Vol. 1, No. 1, Article 1. Publication date: November 2024.



Proposal: Predictive Path Planning for Multi-Agent Racing 1:7

on our results, we successfully achieved this goal by integrating the Pure Pursuit algorithm with
occupancy grid-based local planners, particularly through our implementation of the A* algorithm.
Our system demonstrated the ability to safely detect and avoid both dynamic and static obstacles,
all while maintaining competitive racing speeds.
Looking ahead, future work will focus on building upon these results to achieve higher perfor-

mance and incorporate more advanced algorithms. Specifically, one area of improvement involves
identifying and distinguishing opponents to implement sophisticated racing strategies, such as
overtaking maneuvers, which were beyond the scope of the current implementation. Despite
these limitations, we are confident that the current system provides a robust foundation for future
advancements, enabling the development of increasingly competitive and intelligent multi-agent
racing strategies.
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